A Graph Manipulations for Fast Centrality Computation

نویسندگان

  • AHMET ERDEM SARIYÜCE
  • KAMER KAYA
  • ERIK SAULE
چکیده

The betweenness and closeness metrics are widely used metrics in many network analysis applications. Yet, they are expensive to compute. For that reason, making the betweenness and closeness centrality computations faster is an important and well-studied problem. In this work, we propose the framework BADIOS which manipulates the graph by compressing it and splitting into pieces so that the centrality computation can be handled independently for each piece. Experimental results show that the proposed techniques can be a great arsenal to reduce the centrality computation time for various types and sizes of networks. In particular, it reduces the betweenness centrality computation time of a 4.6 million edges graph from more than 5 days to less than 16 hours. For the same graph, the closeness computation time is decreased from more than 3 days to 6 hours (12.7x speedup).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fast Approach to the Detection of All-Purpose Hubs in Complex Networks with Chemical Applications

A novel algorithm for the fast detection of hubs in chemical networks is presented. The algorithm identifies a set of nodes in the network as most significant, aimed to be the most effective points of distribution for fast, widespread coverage throughout the system. We show that our hubs have in general greater closeness centrality and betweenness centrality than vertices with maximal degree, w...

متن کامل

Shattering and Compressing Networks for Centrality Analysis

Who is more important in a network? Who controls the flow between the nodes or whose contribution is significant for connections? Centrality metrics play an important role while answering these questions. The betweenness metric is useful for network analysis and implemented in various tools. Since it is one of the most computationally expensive kernels in graph mining, several techniques have b...

متن کامل

Fast exact and approximate computation of betweenness centrality in social networks

Social networks have demonstrated in the last few years to be a powerful and flexible concept useful to represent and analyze data emerging from social interactions and social activities. The study of these networks can thus provide a deeper understanding of many emergent global phenomena. The amount of data available in the form of social networks is growing by the day. This poses many computa...

متن کامل

Comparative analysis of organizational processes by the use of the social network concepts

This study presents a comparative analysis of redesigned models of organizational processes by making use of social network concepts. After doing re-engineering of organizational processes which had been conducted in the headquarters of Mazandaran Province Education Department, different methods were used which included the alpha algorithm, alpha⁺, genetics and heuristics. Every one of these me...

متن کامل

Heuristical top-k: fast estimation of centralities in complex networks

Centrality metrics have proven to be of a major interest when analyzing the structure of networks. Given modern-day network sizes, fast algorithms for estimating these metrics are needed. This paper proposes a computation framework (named Filter-Compute-Extract) that returns an estimate of the top-k most important nodes in a given network. We show that considerable savings in computation time c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016